also by Robert Bringhurst

Poetry:

The Shipwright's Log - 1972
Cadastre - 1973
Bergschlund - 1975
Tsualem's Mountain - 1982
The Beauty of the Weapons: Selected Poems 1972-82 - 1982
The Blue Roofs of Japan - 1986
Pieces of Map, Pieces of Music - 1986
Conversations with a Toad - 1987

Prose:

Visions: Contemporary Art in Canada
(with Geoffrey James, Russell Keziere & Doris Shadbolt) - 1983
Ocean/Paper/Stone - 1984
The Raven Steals the Light (with Bill Reid) - 1984
Shovels, Shoes and the Slow Rotation of Letters - 1986
The Black Canoe (with photographs by Ulli Steltzer) - 1991

The Elements of Typographic Style

Robert Bringhurst
increasingly superseded questions of artistry. By the end of the
nineteenth century, commercial considerations had changed
the methods as well as the taste of the trade. Punches and
matrices were increasingly cut by machine from large pattern
letters, and calligraphic models were all but unknown.

The twentieth-century rediscovery of the history and prin-
ciples of typographic form was not associated with any particu-
lar technology. It occurred among scholars and artists who
brought their discoveries to fruition wherever they found em-
ployment: in type foundries, typesetting-machine companies,
art schools and their own small, independent studios.

Despite commercial pressures, the best of the old metal
foundries, like the best of the new digital ones, were more than
merely market-driven machine shops. They were cultural insti-
tutions, on a par with fine publishing houses and the ateliers of
printmakers, potters, weavers and instrument makers. What
made them so was the stature of the type designers, living and
dead, whose work they produced — for type designers are, at
their best, the Stradivarii of literature: not merely makers of
salable products, but artists who make the instruments that
other artists use.

7.3.6 Digital Typography

It is much too soon to summarize the history of digital typog-
raphy, but the evolution of computerized bitmapping, hinting
and scaling techniques has proceeded very quickly since the
development of the microchip at the beginning of the 1970s. At
the same time, the old technologies, freed from commercial
duties, have by no means died. Foundry type, Monotype and
letterpress remain important artistic instruments, alongside
brush and chisel, pencil, graver and pen.

Typographic style is founded not on any one technology of
typesetting or printing, but on the primitive yet subtle craft of
writing. Letters derive their form from the motions of the hu-
man hand, restrained and amplified by a tool. That tool may be
as complex as a digitizing tablet or a specially programmed
keyboard, or as simple as a sharpened stick. Meaning resides, in
either case, in the firmness and grace of the gesture itself, not in
the tool with which it is made.

SHAPING THE PAGE

A book is a flexible mirror of the mind and the body. Its overall
size and proportions, the color and texture of the paper, the
sound it makes as the pages turn, and the smell of the paper,
adsorptive and ink, all blend with the size and form and place-
ment of the type to reveal a little about the world in which it
was made. If the book appears to be only a paper machine,
produced at their own convenience by other machines, only
machines will want to read it.

8.1 ORGANIC & MECHANICAL PROPORTION

A page, like a building or a room, can be of any size and propor-
tion, but some are distinctly more pleasant than others, and
some have quite specific connotations. A brochure that unfolds
and refolds in the hand is intrinsically different from a formal
letter that lies motionless and flat, or a handwritten note that
folds into quarters and comes in an envelope of a different
shape and size. All of these are different again from a book, in
which the pages flow sequentially in pairs.

Much typography is based, for the sake of convenience, on
standard industrial paper sizes, from 35 × 45 inch press sheets to
3½ × 2 inch conventional business cards. Some formats, such as
the booklets that accompany compact discs, are condemned to
especially rigid restrictions of size. But many typographic proj-
cts begin with the opportunity and necessity of selecting the
dimensions of the page.

There is rarely a free choice. A page size of 12 × 19 inches,
for example, is likely to be both inconvenient and expensive
because it is just in excess of 11 × 17, which is a standard in-
dustrial unit. And a brochure that is 5 × 9 inches, no matter how
domestic, might be unacceptable because it is too wide to fit
into a standard business envelope (4½ × 9½). But when the
realm of practicality has been established, and it is known that
the page must fall within certain limits, how is one to choose?
By taking whatever is easiest, or biggest, or whatever is the most
convenient standard size? By trusting to blind instinct?

Instinct, in matters such as these, is largely memory in dis-
 guise. It works quite well when it is trained, and poorly other-
wise. But in a craft like typography, no matter how perfectly honed one’s instincts are, it is useful to be able to calculate answers exactly. History, natural science, geometry and mathematics are all relevant to typography in this regard — and can all be counted on for aid.

Scribes and typographers, like architects, have been shaping visual spaces for thousands of years. Certain proportions keep recurring in their work because they please the eye and the mind, just as certain sizes keep recurring because they are comfortable to the hand. Many of these proportions are inherent in simple geometric figures — equilateral triangle, square, regular pentagon, hexagon and octagon. And these proportions not only seem to please human beings in many different centuries and countries; they are also prominent in nature far beyond the human realm. They occur in the structures of molecules, mineral crystals, soap bubbles, flowers, as well as books and temples, manuscripts and mosques.

The tables on pp. 132–133 list a number of page proportions derivable from simple geometric figures. These proportions occur repeatedly in nature, and pages that embody them recur in manuscripts and books from Renaissance Europe, T’ang and Sōng dynasty China, early Egypt, pre-columbian Mexico and ancient Rome. It seems that the beauty of these proportions is more than a matter of regional taste or immediate fashion. They are therefore useful for two purposes. Working and playing with them is a way of developing good typographical instincts, and they serve as useful references in analyzing old designs and calculating new ones.

For comparison, several other proportions are included in the tables. There are several simple numerical ratios, several standard industrial sizes, and several proportions involving three irrational numbers important in the analysis of natural processes and structures. These numbers are \(\pi = 3.14159 \ldots \), which is the circumference of a circle whose diameter is one; \(e = 2.71828 \ldots \), which is the base of the natural logarithms; and \(\varphi = 1.61803 \ldots \), a number discussed in greater detail on p. 139. Certain of these proportions reappear in the structure of the human body; others appear in musical scales. The study of the interrelations between anatomy, music and typography reaches deeply into the elements of typographic style. But for the moment, some more general correspondences and differences may be useful to keep in mind.

Sizing and spacing type, like composing and performing music or applying paint to canvas, is largely concerned with intervals and differences. As the texture builds, precise relationships and very small discrepancies are easily perceived. Establishing the overall dimensions of the page is more a matter of limits and sums. In this realm, it is usually sufficient, and often it is better, if structural harmony is not so much enforced as implied. That is one of the reasons typographers tend to fall in love with books. The pages flex and turn; their proportions ebb and flow against the underlying form. But the harmony of that underlying form is no less important, and no less easy to perceive, than the harmony of the letterforms themselves.

Portions of this chapter are peppered with numbers. Some passages are also thick with the language of simple mathematics. Readers may well ask whether all this is necessary, merely in order to choose where some letters should sit on a piece of paper and where the paper itself should be trimmed. The answer, naturally, is no. It is not in the least necessary to understand the mathematics in order to perform the actions that the math describes. People walk and ride bicycles without mathematical analyses of these complex operations. The chambered nautilus and the snail construct perfect logarithmic spirals without any need of logarithmic tables, slide rules or the theory of infinite series. The typographer likewise can construct beautiful pages without knowing the meaning of symbols like \(\pi \) or \(\varphi \), and indeed without ever learning to add and subtract, if he has a well-educated eye and knows which buttons to push on the calculator and keyboard.

The mathematics are not here to impose drudgery upon anyone. On the contrary, they are here entirely for pleasure. They are here for the pleasure of those who like to examine what they are doing, or what they might do or have done, perhaps in the hope of doing it still better. Those who prefer to act directly at all times, and to leave the analysis to others, may be content in this chapter to study the pictures and skim the text.
<table>
<thead>
<tr>
<th>Organic and Mechanical Proportion</th>
<th>Page/Column Proportions</th>
<th>Sample sizes in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Double Square</td>
<td>1 : 2</td>
<td>4.50 x 9 5.00 x 10 5.50 x 11</td>
</tr>
<tr>
<td>B Tall Octagon</td>
<td>1 : 1.924</td>
<td>4.68 x 9 5.20 x 10 5.72 x 11</td>
</tr>
<tr>
<td>C Tall Hexagon</td>
<td>1 : 1.866</td>
<td>4.82 x 9 5.36 x 10 5.89 x 11</td>
</tr>
<tr>
<td>D Octagon</td>
<td>1 : 1.848</td>
<td>4.87 x 9 5.41 x 10 5.95 x 11</td>
</tr>
<tr>
<td></td>
<td>5 : 9</td>
<td>1 : 1.8</td>
</tr>
<tr>
<td>E Hexagon</td>
<td>1 : 1.732</td>
<td>4.91 x 8.5 5.20 x 9 6.36 x 11</td>
</tr>
<tr>
<td></td>
<td>2 : π</td>
<td>1 : 1.731</td>
</tr>
<tr>
<td>F Tall Pentagon</td>
<td>1 : 1.701</td>
<td>5.00 x 8.5 5.29 x 9 6.47 x 11</td>
</tr>
<tr>
<td></td>
<td>3 : 5</td>
<td>1 : 1.667</td>
</tr>
<tr>
<td>G Golden Section</td>
<td>1 : 1.618</td>
<td>5.25 x 8.5 5.56 x 9 6.80 x 11</td>
</tr>
<tr>
<td></td>
<td>5 : 8</td>
<td>1 : 1.6</td>
</tr>
<tr>
<td></td>
<td>2 : π</td>
<td>1 : 1.571</td>
</tr>
<tr>
<td>H Pentagon</td>
<td>1 : 1.539</td>
<td>5.52 x 8.5 5.85 x 9 7.15 x 11</td>
</tr>
<tr>
<td></td>
<td>2 : 3</td>
<td>1 : 1.5</td>
</tr>
<tr>
<td>I ISO = 1 : √2</td>
<td>1 : 1.414</td>
<td>6.36 x 9 7.07 x 10 7.75 x 11</td>
</tr>
<tr>
<td></td>
<td>5 : 7</td>
<td>1 : 1.4</td>
</tr>
<tr>
<td>J Short Pentagon</td>
<td>1 : 1.376</td>
<td>6.54 x 9 7.27 x 10 8.00 x 11</td>
</tr>
<tr>
<td></td>
<td>3 : 4</td>
<td>1 : 1.333</td>
</tr>
<tr>
<td>K Tall Half Octagon</td>
<td>1 : 1.307</td>
<td>6.89 x 9 7.65 x 10 8.42 x 11</td>
</tr>
<tr>
<td>Letter Sheet</td>
<td>1 : 1.294</td>
<td>8.50 x 11</td>
</tr>
<tr>
<td></td>
<td>4 : 5</td>
<td>1 : 1.25</td>
</tr>
<tr>
<td>L Half Octagon</td>
<td>1 : 1.207</td>
<td>7.46 x 9 8.29 x 10 9.11 x 11</td>
</tr>
<tr>
<td></td>
<td>5 : 6</td>
<td>1 : 1.2</td>
</tr>
<tr>
<td>M Truncated Pentagon</td>
<td>1 : 1.176</td>
<td>7.65 x 9 8.50 x 10 9.36 x 11</td>
</tr>
<tr>
<td></td>
<td>6 : 7</td>
<td>1 : 1.167</td>
</tr>
<tr>
<td></td>
<td>2 : π</td>
<td>1 : 1.156</td>
</tr>
<tr>
<td>N Turned Hexagon</td>
<td>1 : 1.155</td>
<td>7.79 x 9 8.67 x 10 9.53 x 11</td>
</tr>
<tr>
<td>O Tall Cross Octagon</td>
<td>1 : 1.082</td>
<td>8.32 x 9 9.24 x 10 10.2 x 11</td>
</tr>
<tr>
<td>P Turned Pentagon</td>
<td>1 : 1.051</td>
<td>8.56 x 9 9.51 x 10 10.5 x 11</td>
</tr>
<tr>
<td>Q Square</td>
<td>1 : 1</td>
<td></td>
</tr>
<tr>
<td>R Broad Pentagon</td>
<td>1 : 0.951</td>
<td>9 x 8.56 10 x 9.51 11 x 10.5</td>
</tr>
<tr>
<td>S Broad Cross Octagon</td>
<td>1 : 0.924</td>
<td>9 x 8.32 10 x 9.24 11 x 10.2</td>
</tr>
<tr>
<td>T Broad Hexagon</td>
<td>1 : 0.866</td>
<td>9 x 7.79 10 x 8.67 11 x 9.53</td>
</tr>
<tr>
<td></td>
<td>2 : π</td>
<td>1 : 0.865</td>
</tr>
<tr>
<td>U Full Cross Octagon</td>
<td>1 : 0.829</td>
<td>9 x 7.46 10 x 8.29 11 x 9.11</td>
</tr>
<tr>
<td>Landscape Letter</td>
<td>1 : 0.773</td>
<td>9 x 6.96 10 x 7.73 11 x 8.50</td>
</tr>
<tr>
<td>φ : 1</td>
<td>1 : 0.618</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column/Page Proportions</th>
<th>Sample sizes in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Quad Square</td>
<td>1 : 4 2.25 x 9 2.50 x 10 2.75 x 11</td>
</tr>
<tr>
<td>1 : √2</td>
<td>1 : 3.873</td>
</tr>
<tr>
<td>5 : 18</td>
<td>1 : 3.6</td>
</tr>
<tr>
<td>b Octagon Wing</td>
<td>1 : 3.414 2.64 x 9 2.93 x 10 3.22 x 11</td>
</tr>
<tr>
<td>1 : 2π</td>
<td>1 : 3.236</td>
</tr>
<tr>
<td>5 : 16</td>
<td>1 : 3.2</td>
</tr>
<tr>
<td>c 1 : √10</td>
<td>1 : 3.162 2.85 x 9 3.16 x 10 3.48 x 11</td>
</tr>
<tr>
<td>d 1 : π</td>
<td>1 : 3.142 2.86 x 9 3.18 x 10 3.50 x 11</td>
</tr>
<tr>
<td>e Double Pentagon</td>
<td>1 : 3.078 2.92 x 9 3.25 x 10 3.57 x 11</td>
</tr>
<tr>
<td>f Wide Octagon Wing</td>
<td>1 : 2.993 3.01 x 9 3.34 x 10 3.68 x 11</td>
</tr>
<tr>
<td>g 1 : 2√2</td>
<td>1 : 2.828 3.18 x 9 3.54 x 10 3.89 x 11</td>
</tr>
<tr>
<td>5 : 14</td>
<td>1 : 2.8</td>
</tr>
<tr>
<td>h Pentagon Wing</td>
<td>1 : 2.753 3.27 x 9 3.63 x 10 4.00 x 11</td>
</tr>
<tr>
<td>i 1 : e</td>
<td>1 : 2.718 3.31 x 9 3.68 x 10 4.05 x 11</td>
</tr>
<tr>
<td>3 : 8</td>
<td>1 : 2.667</td>
</tr>
<tr>
<td>j 1 : √3</td>
<td>1 : 2.646 3.40 x 9 3.78 x 10 4.16 x 11</td>
</tr>
<tr>
<td>k Extended Section</td>
<td>1 : 2.618 3.44 x 9 3.82 x 10 4.20 x 11</td>
</tr>
<tr>
<td>l Tall Octagon Column</td>
<td>1 : 2.613 3.44 x 9 3.83 x 10 4.21 x 11</td>
</tr>
<tr>
<td>5 : 13</td>
<td>1 : 2.6</td>
</tr>
<tr>
<td>m Mid Octagon Column</td>
<td>1 : 2.514 3.56 x 9 3.98 x 10 4.38 x 11</td>
</tr>
<tr>
<td>2 : 5</td>
<td>1 : 2.5</td>
</tr>
<tr>
<td>n Short Octagon Column</td>
<td>1 : 2.414 3.73 x 9 4.14 x 10 4.56 x 11</td>
</tr>
<tr>
<td>5 : 12</td>
<td>1 : 2.4</td>
</tr>
<tr>
<td>o Hexagon Wing</td>
<td>1 : 2.309 3.90 x 9 4.33 x 10 4.76 x 11</td>
</tr>
<tr>
<td>p Double Truncated Pentagon</td>
<td>1 : 2.252 4.00 x 9 4.44 x 10 4.88 x 11</td>
</tr>
<tr>
<td>1 : √5</td>
<td>1 : 2.236 4.03 x 9 4.47 x 10 4.92 x 11</td>
</tr>
<tr>
<td>5 : 11</td>
<td>1 : 2.2</td>
</tr>
<tr>
<td>A Double Square</td>
<td>1 : 2 4.50 x 9 5.00 x 10 5.50 x 11</td>
</tr>
</tbody>
</table>
Pages derived from the pentagon: F the Tall Pentagon page, 1 : 1.701; H Pentagon page, 1 : 1.539; J Short Pentagon page, 1 : 1.376; M the Truncated Pentagon page, 1 : 1.176; P Turned Pentagon page, 1 : 1.051; R the Broad Pentagon page, 1 : 0.951; h Pentagon Wing, 1 : 2.753; p the Double Truncated Pentagon, 1 : 2.252. The pentagon page differs by 2% from the North American standard small trade book size, which is half the size of a letter sheet: 5⅛ x 8⅜ inches. A more eminent page proportion, the golden section, is also present in the pentagon; see p 139. In nature, pentagonal symmetry is rare in inanimate forms. Packed soap bubbles strive for it but never quite succeed, and there are no mineral crystals with true pentagonal structures. But pentagonal geometry is basic to many living things, from roses and forget-me-nots to sea urchins and starfish.

Pages derived from the hexagon: C the Tall Hexagon page, 1 : 1.866; E Hexagon page, 1 : \(\sqrt{3} = 1 : 1.732\); N Turned Hexagon page, 1 : 1.155; T Broad Hexagon page, 1 : 0.866; o Hexagon Wing, 1 : 2.309. The hexagon consists of six equilateral triangles, and each of these page shapes can be derived directly from the triangle instead. The hexagon merely clarifies their existence as mirror images, like the pages of a book. Hexagonal structures are present in both the organic and the inorganic world—in lilies and wasps' nests, for example, and in snowflakes, silica crystals and sunbaked mudflats. The proportions of the broad hexagon page are within one tenth of one per cent of the natural ratio \(\pi/e\), while the turned hexagon page (which is the broad hexagon rotated 90°) approximates the ratio \(e/\pi\). (The hexagon page used in this book is analyzed on p 6.)
Organic and Mechanical Proportion

Pages derived from the octagon: B the Tall Octagon page, 1:1.924; D Octagon page, 1:1.848; K Tall Half Octagon page, 1:1.307; L Half Octagon page, 1:1.207; O Tall Cross Octagon, 1:1.082; S Broad Cross Octagon page, 1:0.924; U the Full Cross Octagon page, 1:0.829; b Octagon Wing, 1:3.414; f Wide Octagon Wing, 1:2.993; l, m, n Tall, Middle and Short Octagon Columns, 1:2.613, 1:2.514 and 1:2.414.

The tall half octagon page (K), used in Roman times, differs by a margin of 1% from the standard North American letter size. Are proportions derived from the hexagon and pentagon livelier and more pleasing than those derived from the octagon? Forms based on the hexagon and pentagon are, at any rate, more frequent in the structure of flowering plants and elsewhere in the living world.

Pages derived from the circle and the square: A Double Square page, 1:2; I the Broad Square page, which is the ISO standard, $1 : \sqrt{2} = 1 : 1.414$; Q the Perfect Square; g Double ISO, $1 : 2\sqrt{2} = 1 : 2.828$. The proportion $1 : \sqrt{2}$ is that of side to diagonal in a square. A rectangle of these proportions (and no others) can be halved or doubled indefinitely to produce new rectangles of the same proportion. The proportion was chosen for that reason as the basis for ISO (International Organization for Standardization) paper sizes. The A4 sheet, for example, is standard European letter size, $210 \times 297 \text{ mm} = 8\frac{3}{4} \times 11\frac{3}{8} \text{ in}$. An $8\frac{3}{4} \times 12 \text{ in}$ book page also embodies this proportion.

The ISO or broad square page is latent not only in the square but in the octagon.
8.2 THE GOLDEN SECTION

The golden section is a symmetrical relation built from asymmetrical parts. Two numbers, shapes or elements embody the golden section when the smaller is to the larger as the larger is to the sum. That is, \(a : b = b : (a + b) \). In the language of algebra, this ratio is \(1 : \varphi = 1 : (1 + \sqrt{5})/2 \), and in the language of trigonometry, it is \(1 : (2 \sin 54^\circ) \). Its approximate value in decimal terms is \(1 : 1.61803 \).

The second term of this ratio, \(\varphi \) (the Greek letter \(\phi \)), is a number with several unusual properties. If you add one to \(\varphi \), you get its square (\(\varphi \times \varphi \)). If you subtract one from \(\varphi \), you get its reciprocal (\(1/\varphi \)). And if you multiply \(\varphi \) endlessly by itself, you get an infinite series embodying a single proportion. That proportion is \(1 : \varphi \). If we rewrite these facts in the typographical form mathematicians like to use, they look like this:

\[
\varphi + 1 = \varphi^2 \\
\varphi - 1 = 1/\varphi \\
\varphi^{-1} : 1 = 1 : \varphi = \varphi : \varphi^2 = \varphi^2 : \varphi^3 = \varphi^3 : \varphi^4 = \varphi^4 : \varphi^5 \ldots
\]

If we look for a numerical approximation to this ratio, \(1 : \varphi \), we will find it in something called the Fibonacci series, named for the thirteenth-century mathematician Leonardo Fibonacci. Though he died two centuries before Gutenberg, Fibonacci is important in the history of European typography as well as mathematics. He was born in Pisa but studied in North Africa. On his return, he introduced Arabic numerals to the North Italian scribes.

As a mathematician, Fibonacci took an interest in many problems, including the problem of unchecked propagation. What happens, he asked, if everything breeds and nothing dies? The answer is a logarithmic spiral of increase. Expressed as a series of integers, such a spiral takes the following form:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657 ...

Here each term after the first two is the sum of the two preceding. And the farther we proceed along this series, the
closer we come to an accurate approximation of the number \(\phi \). Thus \(5 : 8 = 1 : 1.6; \) \(8 : 13 = 1 : 1.625; \) \(13 : 21 = 1 : 1.615; \) \(21 : 34 = 1 : 1.619 \), and so on.

In the world of pure mathematics, this spiral of increase, the Fibonacci series, proceeds without end. In the world of mortal living things, of course, the spiral quickly breaks off. It is repeatedly interrupted by death and other practical considerations – but it is visible nevertheless in the short term. Abbreviated versions of the Fibonacci series, and the proportion \(1 : \phi \), can be seen in the structure of pineapples, pinecones, sunflowers, sea urchins, snails, the chambered nautilus, and in the proportions of the human body as well.

If we convert the ratio \(1 : \phi \) or \(1 : 1.61803 \ldots \) to percentages, the smaller part is roughly 38.2% and the larger 61.8% of the whole. But we will find the exact proportions of the golden section in several simple geometrical figures. These include the pentagon, where they are relatively obvious, and the square, where they are somewhat more deeply concealed.

The golden section was much admired by classical Greek geometers and architects, and by Renaissance mathematicians, architects and scribes, who often used it in their work. It has also been much admired by artists and craftsmen, including typographers, in the modern age. Paperback books in the Penguin Classics series have been manufactured for more than half a century to the standard size of 111 x 180 mm, which embodies the golden section. The Modulor system of the Swiss architect Le Corbusier is based on the golden section as well.

If type sizes are chosen according to the golden section, the result is again a Fibonacci series:

(a) \(5, 8, 13, 21, 34, 55, 89 \ldots \)

These sizes alone are adequate for many typographic tasks. But to create a more versatile scale of sizes, a second or third interlocking series can be added. The possibilities include:

(b) \(6, 10, 16, 26, 42, 68, 110 \ldots \)

(c) \(4, 7, 11, 18, 29, 47, 76 \ldots \)

All three of these series – a, b and c – obey the Fibonacci rule (each term is the sum of the two terms preceding). Series b is also related to series a by simple doubling. The combination
of a and b is therefore a two-stranded Fibonacci series with incremental symmetry, forming a very versatile scale of type sizes:

(d) 6, 8, 10, 13, 16, 21, 26, 34, 42, 55, 68 ...

A similar double-stranded Fibonacci series was used by Le Corbusier (with other units of measurement) in his architectural work:

(e) 4 6½ 10½ 17 27½ 44½ 72 5 8 13 21 34 55 89 ...

Finding the golden section in the square. Begin with the square abcd. Bisect the square (with the line ef) and draw diagonals (ec and ed) in each half. An isosceles triangle, cde, consisting of two right triangles, is formed. Extend the base of the square (draw the line gk) and project each of the diagonals (the hypotenuse of each of the right triangles) onto the extended base. Now ce = cg, and de = dk. Draw the new rectangle, efgk. This and its mirror image, ejkf, each have the proportions of the golden section. That is to say, eh : gh = gh : (gh + eh) = ej : jk = jk : (jk + ej) = 1 : φ. (Compare this with figure 13 on p 137.)

The relationship between the square and the golden section is perpetual. Each time a square is subtracted from a golden section, a new golden section remains. If two overlapping squares are formed within a golden-section rectangle, two smaller rectangles of golden-section proportions are created, along with a narrow column whose proportions are 1 : (φ + 1) = 1 : 2.618. This is k, the Extended Section, from the table on p 133. If a square is subtracted from this, the golden section is restored.
8.3.2. Choose page proportions suited to the content, size and ambitions of the publication.

There is no one ideal proportion, but some are clearly more ponderous, others more brittle. In general, a book page, like a human being, should not peer down its nose, nor should it sag.

The narrower page shapes require a soft or open spine so that the opened book lies flat, and at smaller sizes, narrower pages are suitable only for text that can be set to a narrow measure. At larger sizes, the narrow page is more adaptable.

For ordinary books, consisting of simple text in a modest size, typographers and readers both gravitate to proportions ranging from the light, agile 5:9 [1:1.8] to the heavier and more stolid 4:5 [1:1.25]. Pages wider than 1:½ are useful primarily in books that need the extra width for maps, tables, sidenotes or illustrations, and for books in which a multiple-column page is preferred.

When important illustrations are involved, these generally decide the shape of the page. Typically, one would choose a page somewhat deeper than the average illustration, both to leave extra blank space at the foot of the page, and to permit the insertion of captions. The e/π or turned hexagon page, 1:1.16, for example, which is slightly deeper than a perfect square, is useful for square artwork, such as photographs taken with a square-format camera. The π/e or broad hexagon page, 1:0.87, is useful for landscape photographs in the 4 x 5 format, and the full cross octagon page, 1:0.83, for landscape photos in the wider format of 35 mm. (Uncropped 35 mm transparencies are of the proportion 2:3.)

8.3.3 Choose page and column proportions whose historical associations suit your intended design.

Early Egyptian scribes (when not writing vertically) tended to write a long line and a wide column. This long, Egyptian line reappears in other contexts over the centuries – on Roman imperial writing tablets, in medieval European charters and deeds, and in many poorly designed twentieth-century works of academic prose. It is a sign, generally speaking, that the emphasis is on the writing instead of the reading, and that writing is seen as an instrument of power, not an instrument of freedom.
Early Hebrew scribes generally favored a narrower column, and early Greek scribes a column narrower still. But they, like the Egyptians, were making scrolls instead of bound books. It is difficult, therefore, to compare their notions of the page. You can open a scroll as wide as you like, exposing one column, two columns, three. This flexible approach to the concept of the page is also present in early codices (bound books). There are early books that are three times taller than wide, others that are close to square, and many shapes between.

In medieval Europe, most books, though certainly not all, settled down to proportions ranging from 1:1.5 to 1:1.25. Paper was commonly made in sheets whose proportions were 2:3 [1:1.5] or 3:4 [1:1.33], and these proportions reproduce one another with each fold. If a sheet is 40 x 60 cm [2:3] to start with, it folds to 30 x 40 [3:4], which folds to 20 x 30, and so on. The 25 x 38 inch [roughly 2:3] and 20 x 26 inch [roughly 3:4] press sheets used today in North America are survivors of this medieval tradition.

The page proportion 1:√2, which is now the European standard, was also known to the medieval scribes. And the tall half octagon page, 1:1.3 (the proportions of North American letter paper) has a similar pedigree. The British Museum has a Roman wax-tablet book of precisely this proportion, dated about AD 300.

Renaissance typographers continued to produce books in the proportions 1:1.5. They also developed an enthusiasm for narrower proportions. The proportions 1:1.87 (tall hexagon), 1:1.7 (tall pentagon), 1:1.67 [3:5], and of course 1:1.62, the golden section, were used by typographers in Venice before the end of the fifteenth century. The narrower page was preferred especially for works in the arts and sciences. Wider pages, better able to carry a double column, were preferred for legal and ecclesiastical texts. (Even now, a Bible, a volume of court reports or a manual on mortgages or wills is likely to be on a wider page than a book of poems or a novel.)

Renaissance page proportions (generally in the range of 1:1.4 to 1:2) survived through the Baroque, but Neoclassical books are often wider, returning to the heavier Roman proportion of 1:1.3.

8.4 THE TYPEBLOCK

8.4.1 If the text is meant to invite continuous reading, set it in columns that are clearly taller than wide.

Horizontal motion predominates in alphabetic writing, and for beginners, it predominates in reading. But vertical motion predominates in reading for those who have really acquired the skill. The tall column of type is a symbol of fluency, a sign that the typographer does not expect the reader to have to puzzle out the words.

The very long and very narrow columns of newspapers and magazines, however, have come to suggest disposable prose and quick, unthoughtful reading. A little more width not only gives the text more presence; it implies that it might be worth savoring, quoting and reading again.

8.4.2 Shape the typeblock so that it balances and contrasts with the shape of the overall page.

The proportions that are useful for the shapes of pages are equally useful in shaping the typeblock. This is not to say that the proportions of the typeblock and the page should be the same. They often were the same in medieval books. In the Renaissance, many typographers preferred a more polyphonic page, in which the proportions of page and typeblock differ. But it is pointless for them to differ unless, like intervals in music, they differ to a clear and purposeful degree.

For all the beauty of pure geometry, a perfectly square block of type on a perfectly square page with even margins all around is a form unlikely to encourage reading. Reading, like walking, involves navigation — and the square block of type on a square block of paper is short of basic landmarks and clues. To give the reader a sense of direction, and the page a sense of liveliness and poise, it is necessary to break this inexorable sameness and find a new balance of another kind. Some space must be narrow so that other space may be wide, and some space emptied so that other space may be filled.

In the simple format shown overleaf, a page whose proportions are 1:1.62 (the golden section) carries a typeblock whose proportions are 1:1.8 [5:9]. This difference constitutes a primary visual chord which generates both energy and harmony in
the page. It is supplemented by secondary harmonies created by
the proportions of the margins and the placement of the type-
block – not in the center of the page but high and toward the
spine.

The typeblock itself, in this example, is symmetrical, but it
is placed asymmetrically on the page. The lefthand page is a
mirror image of the right, but no mirror image runs the other
way. The two-page spread is *symmetrical horizontally* – the
direction in which the pages turn, either backward or forward,
as the reader consults the book – but it is *asymmetrical vertically* –
the direction in which the page stays put while the reader’s eye
repeatedly works its way in one direction: down.

This interlocking relationship of symmetry and asymmetry,
and of balanced and contrasted shape and size, was not new
when this example was designed (in Venice in 1501). The first
European typographers inherited some 2000 years’ worth of
research into these principles from their predecessors, the
scribes. Yet the principles are flexible enough that countless new
typographic compositions wait to be designed.

8.5 Margins & Satellites

8.5.1 Bring the margins into the design.

In typography, margins must do three things. They must *lock
the typeblock to the page* and *lock the facing pages to each other*
through the force of their proportions. Second, they must *frame
the typeblock* in a manner that suits its design. Third, they must
protect the typeblock, leaving it easy for the reader to see and
convenient to handle. (That is, they must leave room for the
reader’s thumbs.) The third of these is easy, and the second is
not difficult. The first is like choosing type: it is an endless
opportunity for typographical play and a serious test of skill.
Perhaps fifty per cent of the character and integrity of a
printed page lies in its letterforms. Much of the other fifty per
cent resides in its margins.

8.5.2 Bring the design into the margins.

The boundaries of the typeblock are rarely absolute. They are
nibbled and punctured by paragraph indents, blank lines be-
tween sections, gutters between columns, and the sinkage of
chapter openings. They are overrun by hanging numbers, out-
dented paragraphs or heads, marginal bullets, folios (page
numbers) and often running heads, marginal notes and other
typographic satellites. These features – whether recurrent, like
folios, or unpredictable, like marginal notes and numbers –
should be designed to give vitality to the page and further bind
the page and the typeblock.

8.5.3 Mark the reader’s way.

Folios are useful in most documents longer than two pages.
They can be anywhere on the page that is graphically pleasing
and easy to find, but in practice this reduces to few possibilities:
1 at the head of the page, aligned with the outside edge of the
textblock (a common place for folios accompanied by running
heads);
2 at the foot of the page, aligned with or slightly indented from
the outside edge of the text;
3 in the upper quarter of the outside margin, beyond the outside
dge of the text;

Page spread, probably by Francesco Grazio, Venice, 1501. The text is
Virgil’s *Aeneid*, set entirely in a crisp, simple italic, roughly 11/11.5 × 16,
with roman small capitals, approximately 5 pt high. The original page size
is 10.7 × 17.3 cm.
at the foot of the page, horizontally centered beneath the textblock.

The fourth of these choices offers Neoclassical poise, but it hinders quick navigation. Folios near the upper or lower outer corner are the easiest to find by flipping pages in a small book. In large books and magazines, the bottom outside corner is generally more convenient for joint assaults by eye and thumb. Folios placed on the inner margin are invisible when needed, and all too visible otherwise.

It is usual to set folios in the text size and to position them near the textblock. Unless they are very black, brightly colored or large, the folios may drown if they get very far away from the text. Strengthened enough to stand on their own, they are likely to prove a distraction.

8.5.4 Don’t restate the obvious.

In Bibles and other large works, running heads have been standard equipment for two thousand years. Photocopying machines, which can easily separate a chapter or a page from the rest of a book or journal, have also given running heads (and running feet, or footers) new importance.

Except as insurance against photocopying pirates, running heads are nevertheless pointless in many books and documents with a strong authorial voice or a unified subject. They remain essential in most anthologies and works of reference, large or small.

Like folios, running heads pose an interesting typographical problem. They are useless if the reader has to hunt for them, so they must somehow be distinguished from the text, yet they must not become a distraction. It has been a common typographical practice since 1501 to set them in spaced small caps of the text size, or if the budget permits, to print them in the text face in a second color.

8.6 PAGE GRIDS & MODULAR SCALES

8.6.1 Use a modular scale if you need one to subdivide the page.

Grids are often used in magazine design and in other situations where unpredictable graphic elements must be combined in a rapid and orderly way.

Modular scales serve much the same purpose as grids, but they are more flexible. A modular scale, like a musical scale, is a prearranged set of harmonious proportions. In essence, it is a measuring stick whose units are indivisible and not of uniform size. The traditional sequence of type sizes shown on page 43, for example, is a modular scale. The single- and double-stranded Fibonacci series discussed on pp 141–142 are modular scales as well. These scales can, in fact, be put directly to use in page design by altering the units from points to picas.

It is perfectly feasible to create a new modular scale for any project requiring one, and the scale can be founded on any convenient single or multiple proportion—a given page size, for example, or the dimensions of a set of illustrations, or something implicit in the subject matter. A work on astronomy might use a modular scale based on star charts or Bode's law of interplanetary distances. A work on Greek art might be laid out using intervals from one or more of the Greek musical scales. A book of modernist literature might be designed using something deliberately arcane—perhaps a scale based on the proportions of the author's hand. Generally speaking, a scale based on two ratios (1:φ and 1:2, for example) will give more flexible and interesting results than a scale founded on one.

The Half Pica Modular scale illustrated here is actually a miniaturized version of the architectural scale of Le Corbusier, which was based in turn on the proportions of the human body.
Four examples of modular pica sticks (shown at half actual size). A Whole Pica Modular scale. B Half Pica Modular scale. These are both two-stranded Fibonacci series, based on the ratios 1 : φ and 1 : 2. C Medieval Interval scale, based on the proportions 2 : 3 and 1 : 2. D Timaean Scale, a simplified version of the Pythagorean scale outlined in Plato's *Timaeus*.

Use of the modular scale. These pages and typeblocks have been subdivided with the Half Pica Modular scale. The pages are 52 × 55 picas ($8\frac{7}{8}'' \times 9\frac{7}{8}''$), with margins of 5, 5, 5 & 8 picas. The basic typeblock is 42 picas square. Thousands of different subdivisions are possible. For more complex examples on similar principles, see Le Corbusier, *The Modulor*.
The formula for designing a perfect page is the same as the formula for writing one: start at the upper left hand corner and work your way across and down; then turn the page and try again. The examples on the following pages show only a few of the many kinds of typographic structures that might evolve along the way.

In fact, the weaving of the text and the tailoring of the page are thoroughly interdependent. We can discuss them one by one, and we can separate each in turn into a series of simple, unintimidating questions. But the answers to these questions must all, in the end, fold back into a single answer. The page, the pamphlet or the book must be seen as a whole if it is to look like one. If it appears to be only a series of individual solutions to separate typographical problems, who will believe that its message coheres?

In analyzing the examples on the following pages, these symbols are used:

Proportions:

\[P = \text{page proportion} = \frac{h}{w} \]
\[T = \text{typeblock proportion} = \frac{d}{m} \]

Page size:

\[w = \text{width of page (trim-size)} \]
\[h = \text{height of page (trim-size)} \]

Typeblock:

\[m = \text{measure (width of primary type block)} \]
\[d = \text{depth of primary type block} \]
\[\text{(excluding running heads, folios, etc)} \]
\[n = \text{secondary measure (width of secondary column)} \]
\[c = \text{column width, where there are even multiple columns} \]

Margins:

\[s = \text{spine margin (back margin)} \]
\[t = \text{top margin (head margin)} \]
\[e = \text{fore-edge (front margin)} \]
\[f = \text{foot margin} \]
\[i = \text{internal gutter (on a multiple-column page)} \]

Page and typeblock proportions\((P\text{ and }T\text{ in the examples})\) are given here as single values (1.414, for example). To find the same values in the table on page 132, look up the corresponding ratio (1 : 1.414, for example).

Shaping the Page

\[P = \text{variable; } T = 1.75. \] \[\text{Margins: } t = h/12; f = 1.5t; i = t/2 \text{ or } t/3. \] \[\text{Text columns from Isaiah Scroll A, from Qumran Cave I, or the Dead Sea. The column depth is 29 lines and the measure is 28 picas, giving a line length of roughly 40 characters. Elsewhere in the scroll, column widths range from 21.5 to 39 picas, but the dimensions shown above are typical. Paragraphs begin on a new line but – in keeping with the crisp, square Hebrew characters – are not indented. (Palestine, perhaps first century BC.) Original size: 26 \times 725 \text{ cm.} \]

\[P = 1.5 \left(\frac{2}{3} \right); T = 1.7 \left(\text{tall pentagon} \right). \] \[\text{Margins: } s = t = w/9; e = 2s. \] \[\text{The text is a fantasy novel, Francesco Colonna's } Hypnerotomachia Poliphili, \] \[\text{set in a roman font cut by Francesco Griffo. (Aidus Manutius, Venice,} \] \[1499.) \text{Original size: } 20.5 \times 31 \text{ cm.} \]
Examples

\[P = 1.62 \text{ [golden section]; } T = 1.87 \text{ [tail hexagon].} \]
Margins: \(s = w/9; t = s; e = 2s. \) Secondary column: \(i = w/75; n = s. \) The text is in roman, the sidenotes in italik at roughly 80% of text size. The gutter between main text and sidenotes is tiny – 6 or 7 pt against a main text measure of 33.5 picas – but the differences in size and face prevent any confusion. The text is a history, set in text and titling fonts cut by Claude Garamond. (Jean Froissart, *Histoire et chronique*, Jean de Tournes, Paris, 1559.) Original size: roughly 21 x 34 cm.

Shaping the Page

\[P = T = 1.5 \text{ [2 : 3].} \]
Margins: \(s = w/9; t = h/9; e = 2s; f = 2t. \) The margins are thus in the proportion \(s : t : e : f = 2 : 3 : 4 : 6. \) A sound, elegant and basic medieval structure, which will work for any proportion of page and typeblock, so long as the two remain in unison. Spine and head margins may be ninths, tenths, twelfths or any other desired proportion of the page size. Twelfths, of course, give a fuller and more efficient page, with less white space. But if the page proportion is 1 : 1.5 and the spine and head margins are ninths, as shown here, the consonance of typeblock and page is considerably deepened, because \(d = w, \) which is to say, the depth of the typeblock matches the width of the page. Thus \(m : w = d : h = w : h = m : d = s : t = e : f = 2 : 3. \) Point \(a, \) where the half and full diagonals intersect, is one third of the way down and across the typeblock and the page. Jan Tschichold, 1955, after Villard de Honnecourt, France, c. 1280. See Tschichold's *The Form of the Book* (1991).

\[P = 1.5 \text{ [2 : 3]; } T = 2 \text{ [double square].} \]
The text is a book of poems, set throughout in a chancery italic with roman capitals. The designer and publisher of this book was a master calligrapher, certainly aware of the tradition that the inner margins should be smaller than the outer. He followed that tradition himself with books of prose, but in this book of poems he chose to center the typeblock on the page. The text throughout is set in one size. Titles are set in the capitals of the text font, letterspaced about 30%. There are no running heads or other diversions. (Giangiorgio Trissino, *Canzone*, Ludovico degli Arrighi, Rome, c. 1523.) Original size: 12.5 x 18.75 cm.
Examples

$P = 1.5 \left[\frac{2}{3} \right]; T = 1.54 \text{ [pentagon typeblock]}. \text{ Margins: } s = w/20; t = s = h/30; e = w/15 = 4s/3; f = 2t. \text{ This is the format used for the index to the fifth edition of the Times Atlas of the World (London, 1975). The page is a standard medieval shape. The text is set in 5.5 pt Univers leaded 0.1 pt on a 12-pica measure, in five subdivided columns per page. Columns are separated by thin vertical rules. Key words and folios, at the top of the page, are in 16 pt Univers semibold. (Because of their prominence, these running heads are included here in calculating the size and shape of the typeblock.) The column-depth, not counting these headers, is 204 lines, yielding an average of 1000 names per page for 217 pages. This index is a masterpiece of its kind: a potent typographic symbol, an efficient work of reference, and a comfortable text to browse. Original size: 30 \times 45 \text{ cm.}$

Shaping the Page

$P = 1.414 \left[\frac{\sqrt{2}}{2} \right]; T = 1.62 \text{ [\(\phi\), the golden section]}. \text{ Margins: } s = t = w/9 \text{ and } e = f = 2s. \text{ This is a simple format for placing a golden-section typeblock on an ISO page, locking the two together with margins in the proportions 1 : 2. Two possible locations for folios are shown, and there is room for sidenotes in the fore-edge if required. If the spine and top margins on these pages are increased to w/8, while the typeblock and page are held at their original proportion, the relationship of the margins becomes } e = f = \frac{\phi s}{3}, \text{ another golden section.}$

$P = 1.1; T = 0.91; c = w/6. \text{ Margins: } s = w/14; e = 2s; t = 3s; f = 3s/2; i = m/20. \text{ The proportions of the typeblock are the reciprocal of the proportions of the page: } 0.91 = 1/1.1, \text{ which is to say that the typeblock is the same shape as the page, rotated } 90^\circ. \text{ But if the gutters are removed from the typeblock and the four columns closed up solid, the typeblock collapses to the same shape in the same orientation as the page. In other words, the typeblock has been expanded from the same shape to the reciprocal shape of the page entirely by the addition of white space. The text is the Greek Bible, lettered in uncial, about 13 characters per line. There are no spaces between the words, but there is some punctuation, and the text has a slight rag, with line breaks carefully chosen. This subtle piece of craftsmanship was produced in Egypt in the fourth century. It is the Codex Sinaiticus, Add. Ms. 43725, at the British Museum, London. Original size: 34.5 \times 38 \text{ cm.}$
8.8 Improvisations & Adjustments

8.8.1 Improvise, calculate, and improvise some more.

Numerical values – used by all typographers in their daily work – give an impression of exactness. Careful measurement and accurate calculation are indeed important in typography, but they are not its final purpose, and moments arise in every project when exactness bumps its head against approximation. On the mechanical side, paper expands and contracts, and printing presses, folding machines and trimming knives – not to speak of typesetting hardware and software – all have their margins of error. The typographer can rarely profit from these variations, and cannot entirely prevent them. On the planning side, however, imprecision can often be put to better use.

Some typographers prefer to design by arithmetic from the outset, in a space composed of little invisible bricks called points and picas. Others prefer to work in the free two-dimensional space of a sketchpad, converting their layouts afterward to typographic measure. Most work involves a combination of these methods, with occasional collisions between the two. But the margins of inexactness that crop up in the rounding of units, in conflicts between optical and arithmetic spacing and centering, in combining proportions, and in translating from one form of measurement to another should be welcomed as opportunities, not as inconsistencies to be ignored, glossed over or begrudged. The equal temperament of the typesetting machine and the just intonation of the sketchpad should be used to test and refine one another until the final answer sings.

8.8.2 Adjust the type and the spaces within the typeblock using typographic increments, but rely on free proportions to adjust the empty space.

Proportions are more flexible than picas, and it is usually convenient and appealing to work in even units. A margin of 5.32 picas, for example, begs to be altered to 5 or 5¼ or 5½. But picas per se are less important than proportions, and the system of typographical sizes and units serves the interrelations of letterforms better than it serves the interrelations of empty space. As a general rule, it is better to make incremental jumps in the typeblock first and to readjust the margins thereafter – paying
more attention in the latter case to absolute proportion than to convenient units of measurement. When space is measured purely in points, the temptation to rearrange it into even picas is miraculously lessened.

8.8.3 Keep the page design supple enough to provide a livable home for the text.

Improvisations and Adjustments

Architects build perfectly proportioned kitchens, living rooms, bedrooms in which their clients will make, among other things, a mess. So the typographer builds perfectly proportioned pages, then distorts them on demand. The text takes precedence over the purity of the design, and the typographic texture of the text takes precedence over the absolute proportions of the individual page.

If, for instance, three lines remain at the end of a chapter, looking forlorn on a page of their own, the design must flex to accommodate them. The obvious choices are:

1 running two of the previous spreads a line long (that is, adding one line to the depth of two pairs of facing pages), which will leave the final page one line short;

2 running half a dozen of the previous spreads a line short, thereby bumping a dozen lines along to the final page; or

3 reproportioning some non-textual element — perhaps an illustration or the sinkage, if any, at the head of the chapter.

Spacious chapter heads stand out in a book, as they are meant to. Reproportioning the sinkage is therefore a poor option unless all chapter heads can be reproportioned to match. And running six spreads short is, on the face of it, clearly a greater evil than running two spreads long.

If there are only a few pages to the document, the whole thing can, and probably should, be redesigned to fit the text. But in a book of many pages, widow lines, orphaned subheads, and the run-end of chapters or sections are certain to require reproportioning some spreads. A rigid design that demands an invariant page depth is therefore inappropriate for a work of any length. Altering the leading on short pages to preserve a standard depth (vertical justification, as it is sometimes called) is not a solution. Neither is stuffing extra space between the paragraphs. These antics destroy the fabric of the text and thus strike at the heart of the book.

FINISHING TOUCHES

9.1 GALLEYS & PROOFS

9.1.1 Check the type at every stage.

Digital letterforms can be printed directly at low resolutions using devices such as a laser printer. They can also be set on photosensitive paper, negative film or positive film, from which printing plates or letterpress blocks are then made. Or they can be etched directly onto printing plates to be run on an offset press. Each of these electrostatic and photographic processes provides an opportunity for overexposing or underexposing the type.

Check for accurate color and sharpness in the final letterforms, and check for consistency throughout. Inconsistent exposure is often encountered when the work is set a section at a time, or when corrected pages are rerun. But even when all the work is run at once, on one machine, inconsistencies can occur. If, for instance, two shelf lots of film or photosensitive paper are inadvertently mixed, the same machine settings will give two different results.

Mechanical errors are also not unknown in the superficially sanitized, high-tech world of computerized type. Many a finely tooled page has been spoiled in the end by a loose roller or unlubricated ratchet. Check the output against a grid to make sure the leading is consistent, multiple columns align as they should, and the type block is not trapezoidal unless it is truly intended to be.

9.2 PAPER & INK

9.2.1 Follow the work to the printer.

Digital methods have helped to bring editing, typography and type design back to the close relationship they enjoyed in the golden age of letterpress. But everything the writer, type designer, editor and typographer do is still contingent on the skills and methods of the printer, and printing often remains a world apart.